Copied to
clipboard

?

G = C4225D6order 192 = 26·3

23rd semidirect product of C42 and D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4225D6, C6.1372+ (1+4), C4⋊C433D6, (C4×D12)⋊13C2, (C4×C12)⋊7C22, D6⋊C47C22, Dic3⋊D444C2, D6⋊D427C2, C12⋊D436C2, C427S38C2, C422C22S3, D6⋊Q840C2, C22⋊C4.40D6, Dic35D439C2, D6.12(C4○D4), D6.D438C2, C23.9D648C2, C2.62(D4○D12), (C2×D12)⋊29C22, (C2×C6).248C24, C4⋊Dic361C22, (C2×C12).193C23, Dic3⋊C427C22, C39(C22.32C24), (C4×Dic3)⋊38C22, (C2×Dic6)⋊11C22, (C22×C6).62C23, C23.64(C22×S3), C23.11D644C2, (S3×C23).68C22, C22.269(S3×C23), (C22×S3).111C23, (C2×Dic3).264C23, C6.D4.64C22, (S3×C2×C4)⋊27C22, C4⋊C4⋊S341C2, C2.95(S3×C4○D4), (S3×C22⋊C4)⋊20C2, (C3×C4⋊C4)⋊32C22, C6.206(C2×C4○D4), (C3×C422C2)⋊3C2, (C2×C4).85(C22×S3), (C2×C3⋊D4).68C22, (C3×C22⋊C4).73C22, SmallGroup(192,1263)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C4225D6
C1C3C6C2×C6C22×S3S3×C23S3×C22⋊C4 — C4225D6
C3C2×C6 — C4225D6

Subgroups: 784 in 250 conjugacy classes, 93 normal (91 characteristic)
C1, C2 [×3], C2 [×6], C3, C4 [×10], C22, C22 [×20], S3 [×5], C6 [×3], C6, C2×C4 [×6], C2×C4 [×8], D4 [×9], Q8, C23, C23 [×8], Dic3 [×4], C12 [×6], D6 [×2], D6 [×15], C2×C6, C2×C6 [×3], C42, C42, C22⋊C4 [×3], C22⋊C4 [×11], C4⋊C4 [×3], C4⋊C4 [×3], C22×C4 [×4], C2×D4 [×7], C2×Q8, C24, Dic6, C4×S3 [×4], D12 [×7], C2×Dic3 [×4], C3⋊D4 [×2], C2×C12 [×6], C22×S3 [×4], C22×S3 [×4], C22×C6, C2×C22⋊C4, C4×D4 [×2], C22≀C2 [×2], C4⋊D4 [×3], C22⋊Q8, C22.D4 [×2], C4.4D4 [×2], C422C2, C422C2, C4×Dic3, Dic3⋊C4 [×2], C4⋊Dic3, D6⋊C4 [×10], C6.D4, C4×C12, C3×C22⋊C4 [×3], C3×C4⋊C4 [×3], C2×Dic6, S3×C2×C4 [×4], C2×D12 [×5], C2×C3⋊D4 [×2], S3×C23, C22.32C24, C4×D12, C427S3, S3×C22⋊C4, D6⋊D4 [×2], C23.9D6, Dic3⋊D4, C23.11D6, Dic35D4, D6.D4, C12⋊D4 [×2], D6⋊Q8, C4⋊C4⋊S3, C3×C422C2, C4225D6

Quotients:
C1, C2 [×15], C22 [×35], S3, C23 [×15], D6 [×7], C4○D4 [×2], C24, C22×S3 [×7], C2×C4○D4, 2+ (1+4) [×2], S3×C23, C22.32C24, S3×C4○D4, D4○D12 [×2], C4225D6

Generators and relations
 G = < a,b,c,d | a4=b4=c6=d2=1, ab=ba, cac-1=dad=a-1b2, cbc-1=a2b, dbd=b-1, dcd=c-1 >

Smallest permutation representation
On 48 points
Generators in S48
(1 31 4 26)(2 35 5 30)(3 33 6 28)(7 34 10 29)(8 32 11 27)(9 36 12 25)(13 41 16 43)(14 47 17 39)(15 37 18 45)(19 46 22 38)(20 42 23 44)(21 48 24 40)
(1 22 10 13)(2 20 11 17)(3 24 12 15)(4 19 7 16)(5 23 8 14)(6 21 9 18)(25 37 33 40)(26 46 34 43)(27 39 35 42)(28 48 36 45)(29 41 31 38)(30 44 32 47)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 6)(2 5)(3 4)(7 12)(8 11)(9 10)(13 21)(14 20)(15 19)(16 24)(17 23)(18 22)(25 31)(26 36)(27 35)(28 34)(29 33)(30 32)(37 41)(38 40)(43 45)(46 48)

G:=sub<Sym(48)| (1,31,4,26)(2,35,5,30)(3,33,6,28)(7,34,10,29)(8,32,11,27)(9,36,12,25)(13,41,16,43)(14,47,17,39)(15,37,18,45)(19,46,22,38)(20,42,23,44)(21,48,24,40), (1,22,10,13)(2,20,11,17)(3,24,12,15)(4,19,7,16)(5,23,8,14)(6,21,9,18)(25,37,33,40)(26,46,34,43)(27,39,35,42)(28,48,36,45)(29,41,31,38)(30,44,32,47), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,6)(2,5)(3,4)(7,12)(8,11)(9,10)(13,21)(14,20)(15,19)(16,24)(17,23)(18,22)(25,31)(26,36)(27,35)(28,34)(29,33)(30,32)(37,41)(38,40)(43,45)(46,48)>;

G:=Group( (1,31,4,26)(2,35,5,30)(3,33,6,28)(7,34,10,29)(8,32,11,27)(9,36,12,25)(13,41,16,43)(14,47,17,39)(15,37,18,45)(19,46,22,38)(20,42,23,44)(21,48,24,40), (1,22,10,13)(2,20,11,17)(3,24,12,15)(4,19,7,16)(5,23,8,14)(6,21,9,18)(25,37,33,40)(26,46,34,43)(27,39,35,42)(28,48,36,45)(29,41,31,38)(30,44,32,47), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,6)(2,5)(3,4)(7,12)(8,11)(9,10)(13,21)(14,20)(15,19)(16,24)(17,23)(18,22)(25,31)(26,36)(27,35)(28,34)(29,33)(30,32)(37,41)(38,40)(43,45)(46,48) );

G=PermutationGroup([(1,31,4,26),(2,35,5,30),(3,33,6,28),(7,34,10,29),(8,32,11,27),(9,36,12,25),(13,41,16,43),(14,47,17,39),(15,37,18,45),(19,46,22,38),(20,42,23,44),(21,48,24,40)], [(1,22,10,13),(2,20,11,17),(3,24,12,15),(4,19,7,16),(5,23,8,14),(6,21,9,18),(25,37,33,40),(26,46,34,43),(27,39,35,42),(28,48,36,45),(29,41,31,38),(30,44,32,47)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,6),(2,5),(3,4),(7,12),(8,11),(9,10),(13,21),(14,20),(15,19),(16,24),(17,23),(18,22),(25,31),(26,36),(27,35),(28,34),(29,33),(30,32),(37,41),(38,40),(43,45),(46,48)])

Matrix representation G ⊆ GL6(𝔽13)

800000
080000
0012071
00012126
0010710
006301
,
930000
340000
0036110
00710011
00120107
0001263
,
100000
7120000
001100
0012000
001031212
0010710
,
100000
7120000
00121200
000100
001031212
006301

G:=sub<GL(6,GF(13))| [8,0,0,0,0,0,0,8,0,0,0,0,0,0,12,0,10,6,0,0,0,12,7,3,0,0,7,12,1,0,0,0,1,6,0,1],[9,3,0,0,0,0,3,4,0,0,0,0,0,0,3,7,12,0,0,0,6,10,0,12,0,0,11,0,10,6,0,0,0,11,7,3],[1,7,0,0,0,0,0,12,0,0,0,0,0,0,1,12,10,10,0,0,1,0,3,7,0,0,0,0,12,1,0,0,0,0,12,0],[1,7,0,0,0,0,0,12,0,0,0,0,0,0,12,0,10,6,0,0,12,1,3,3,0,0,0,0,12,0,0,0,0,0,12,1] >;

36 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I 3 4A4B4C···4G4H4I4J4K4L6A6B6C6D12A···12F12G12H12I
order12222222223444···444444666612···12121212
size11114661212122224···46612121222284···4888

36 irreducible representations

dim1111111111111122222444
type++++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C2C2C2S3D6D6D6C4○D42+ (1+4)S3×C4○D4D4○D12
kernelC4225D6C4×D12C427S3S3×C22⋊C4D6⋊D4C23.9D6Dic3⋊D4C23.11D6Dic35D4D6.D4C12⋊D4D6⋊Q8C4⋊C4⋊S3C3×C422C2C422C2C42C22⋊C4C4⋊C4D6C6C2C2
# reps1111211111211111334224

In GAP, Magma, Sage, TeX

C_4^2\rtimes_{25}D_6
% in TeX

G:=Group("C4^2:25D6");
// GroupNames label

G:=SmallGroup(192,1263);
// by ID

G=gap.SmallGroup(192,1263);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,219,184,675,570,192,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^6=d^2=1,a*b=b*a,c*a*c^-1=d*a*d=a^-1*b^2,c*b*c^-1=a^2*b,d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽